Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 328: 118058, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38513778

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Baoyuan Decoction (BYD) was initially recorded in the classic of "Bo Ai Xin Jian" in the Ming dynasty. It is traditionally used for treating weakness and cowardice, and deficiency of vital energy. In researches related to anti-fatigue effects, the reciprocal regulation of AMPK and circadian clocks likely plays an important role in anti-fatigue mechanism, while it has not yet been revealed. Therefore, we elucidated the anti-fatigue mechanism of BYD through AMPK/CRY2/PER1 pathway. AIM OF THE STUDY: To investigate the effect and mechanism of BYD in reducing fatigue, using pharmacodynamics, network pharmacology and transcriptomics through the AMPK/CRY2/PER1 signaling pathway. MATERIALS AND METHODS: Firstly, the chemical constituents of BYD were qualitatively identified by UHPLC-Q-Exactive Orbitrap/MS, establishing a comprehensive strategy with an in-house library, Xcalibur software and Pubchem combined. Secondly, a Na2SO3-induced fatigue model and 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress model were developed to evaluate the anti-fatigue and anti-oxidant activities of BYD using AB zebrafish. The anti-inflammatory activity of BYD was evaluated using CuSO4-induced and tail cutting-induced Tg (lyz: dsRed) transgenic zebrafish inflammation models. Then, target screening was performed by Swiss ADME, GeneCards, OMIM and DrugBank databases, the network was constructed using Cytoscape 3.9.0. Transcriptome and network pharmacology technology were used to investigate the related signaling pathways and potential mechanisms after treatment with BYD, which were verified by real-time quantitative PCR (RT-qPCR). RESULTS: In total, 114 compounds from the water extract of BYD were identified as major compounds. Na2SO3-induced fatigue model and AAPH-induced oxidative stress model indicated that BYD has significant anti-fatigue and antioxidant effects. Meanwhile, BYD showed significant anti-inflammatory effects on CuSO4-induced and tail cutting-induced zebrafish inflammation models. The KEGG result of network pharmacology showed that the anti-fatigue function of BYD was mainly effected through AMPK signaling pathway. Besides, transcriptome analysis indicated that the circadian rhythm, AMPK and IL-17 signaling pathways were recommended as the main pathways related to the anti-fatigue effect of BYD. The RT-qPCR results showed that compared with a model control group, the treatment of BYD significantly elevated the expression mRNA of AMPK, CRY2 and PER1. CONCLUSION: Herein, we identified 114 chemical constituents of BYD, performed zebrafish activity validation, while demonstrated that BYD can relieve fatigue by AMPK/CRY2/PER1 signaling pathway through network pharmacology and transcriptome.


Subject(s)
AMP-Activated Protein Kinases , Amidines , Drugs, Chinese Herbal , Animals , Zebrafish , Oxidative Stress , Fatigue/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Antioxidants , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
2.
Phytomedicine ; 121: 155092, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37804820

ABSTRACT

BACKGROUND: The risk of compounds/drugs, including aristolochic acid-induced nephrotoxicity remains high and is a significant public health concern. Therefore, it is particularly important to select reasonable animal models for rapid screening and evaluation of different samples with complex chemical systems. The zebrafish (Danio rerio) has been used to study chemical-induced renal toxicity. However, most of the published literature was performed on individual components or drugs, and the key evidence confirming the applicability of zebrafish larvae for the evaluation of aristolochic acid-related nephrotoxicity in complex chemical systems, such as in traditional Chinese medicine (TCM), was insufficient. METHODS: High-performance liquid chromatography (HPLC) was used to determine the content of aristolochic acid (AA) in herbs and Chinese patent medicines. The zebrafish larvae at 4 days post-fertilization (dpf) were used to evaluate the nephrotoxicity of various samples, respectively, based on the phenotype of the kidney and histological, and biochemical. Transcriptome technology was used to investigate the related signaling pathways and potential mechanisms after treatment with AA, which was verified by RT-PCR technology. RESULTS: The results showed that the total amounts of AAI, AAII, and ALI ranged from 0.0004 to 0.1858 g·g-1( %) from different samples, including Aristolochia debilis, Fibraurea recisa, Asarum, Wantongjingu tablets, Jiuweiqianghuo granules, and Xiaoqinglong granules in descending order. Moreover, compared with the negative/blank control, substantial changes in phenotype, histomorphology and biochemical parameters of renal function were observed in the groups challenged with the sublethal concentration of drugs. The transcriptomics results showed the upregulation of most genes in PERK/ATF4/CHOP, ATM/Chk2/p53, Caspase/Bax/Bcl-2a, TGF/Smad/ERK, PI3K/Akt, induced by aristolochic acid analogues, which were essentially consistent with those of the q-RT-PCR experiments, highlighting the similar toxicity response to the previously published article with the other traditional evaluation model. CONCLUSION: The stability, accuracy and feasibility of the zebrafish larval model in screening and evaluating the nephrotoxicity of TCM were validated for the first time on the AAs-related drugs in a unified manner, confirming and promoting the applicability of zebrafish in assessing nephrotoxicity of samples with complex chemical character.


Subject(s)
Aristolochic Acids , Renal Insufficiency , Animals , Zebrafish , Phosphatidylinositol 3-Kinases/metabolism , Aristolochic Acids/toxicity , Aristolochic Acids/analysis , Aristolochic Acids/metabolism , Kidney/pathology , Renal Insufficiency/metabolism , Renal Insufficiency/pathology
3.
Iran J Public Health ; 52(5): 1008-1018, 2023 May.
Article in English | MEDLINE | ID: mdl-37484734

ABSTRACT

Background: The coronavirus disease pandemic has caused significant disruption in the field of education, resulting in the need for more online classes and a blended offline and online teaching model. Therefore, understanding what makes this model effective is important. Accordingly, this study explored the structural relationships among academic pressure, independent learning ability, and academic self-efficacy in a blended teaching environment during the pandemic and independent learning ability's mediating effect on the relationship between academic pressure and academic self-efficacy. Methods: Adopting a random sampling method, this study surveyed 761 Chinese college, Shaanxi Province, China in 2022 and university students. Factor analysis, correlation analysis, structural equation modeling, and path analysis were used to analyze the data. Results: The results show that the academic pressure faced by Chinese English majors had a significant negative impact on academic self-efficacy (P<0.001). However, academic pressure had no statistical effect on students' independent learning ability (P=0.317). Moreover, independent learning ability had a significant positive effect on academic self-efficacy (P<0.001) and a mediating effect on the relationship between academic pressure and academic self-efficacy (P=0.032). Conclusion: Independent learning ability can directly and indirectly affect academic self-efficacy. Thus, in an online and offline blended teaching model, teachers should guide students regarding self-exploration, communication, and cooperation based on existing knowledge and experience. They should also enable students to improve their learning process and independent learning ability. Various language learning situations should be established for learning English so that by experiencing success and failure, students can ultimately improve their academic self-efficacy.

4.
J Pharm Anal ; 13(1): 39-54, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36820075

ABSTRACT

Polyphyllin I (PPI) and polyphyllin II (PII) are the main active substances in the Paris polyphylla. However, liver toxicity of these compounds has impeded their clinical application and the potential hepatotoxicity mechanisms remain to be elucidated. In this work, we found that PPI and PII exposure could induce significant hepatotoxicity in human liver cell line L-02 and zebrafish in a dose-dependent manner. The results of the proteomic analysis in L-02 cells and transcriptome in zebrafish indicated that the hepatotoxicity of PPI and PII was associated with the cholesterol biosynthetic pathway disorders, which were alleviated by the cholesterol biosynthesis inhibitor lovastatin. Additionally, 3-hydroxy-3-methy-lglutaryl CoA reductase (HMGCR) and squalene epoxidase (SQLE), the two rate-limiting enzymes in the cholesterol synthesis, selected as the potential targets, were confirmed by the molecular docking, the overexpression, and knockdown of HMGCR or SQLE with siRNA. Finally, the pull-down and surface plasmon resonance technology revealed that PPI could directly bind with SQLE but not with HMGCR. Collectively, these data demonstrated that PPI-induced hepatotoxicity resulted from the direct binding with SQLE protein and impaired the sterol-regulatory element binding protein 2/HMGCR/SQLE/lanosterol synthase pathways, thus disturbing the cholesterol biosynthesis pathway. The findings of this research can contribute to a better understanding of the key role of SQLE as a potential target in drug-induced hepatotoxicity and provide a therapeutic strategy for the prevention of drug toxic effects with similar structures in the future.

5.
Front Microbiol ; 14: 1070917, 2023.
Article in English | MEDLINE | ID: mdl-36778874

ABSTRACT

Periodontal disease has been suggested to be linked to adverse pregnancy outcomes such as preterm birth, low birth weight, and preeclampsia. Adverse pregnancy outcomes are a significant public health issue with important clinical and societal repercussions. This article systematically reviews the available epidemiological studies involving the relationship between periodontal disease and adverse pregnancy outcomes over the past 15 years, and finds a weak but independent association between adverse pregnancy outcomes and periodontal disease. The bidirectional association and the potential mechanisms are then explored, focusing on three possible mechanisms: inflammatory reaction, oral microorganisms and immune response. Specifically, elevated systemic inflammation and increased periodontal pathogens with their toxic products, along with a relatively suppressed immune system may lead to the disruption of homeostasis within fetal-placental unit and thus induce adverse pregnancy outcomes. This review also explains the possible mechanisms around why women are more susceptible to periodontal disease. In conclusion, pregnant women are more likely to develop periodontal disease due to hormonal changes, and periodontal disease has also been suspected to increase the incidence of adverse pregnancy outcomes. Therefore, in order to lessen the risk of adverse pregnancy outcomes, both obstetricians and dentists should pay attention to the development of periodontal diseases among women during pregnancy.

6.
Zhongguo Zhong Yao Za Zhi ; 48(1): 140-147, 2023 Jan.
Article in Chinese | MEDLINE | ID: mdl-36725266

ABSTRACT

This study used the zebrafish model to explore the hepatotoxicity of Rhododendri Mollis Flos(RMF). The mortality was calculated according to the number of the survival of zebrafish larvae 4 days after fertilization under different concentration of RMF, and the dose-toxicity curve was fitted to preliminarily evaluate the toxicity of RMF. The liver phenotypes under the sublethal concentration of RMF in the treatment group and the blank control group were observed by hematoxylin-eosin(HE) staining and acridine orange(AO) staining. Meanwhile, the activities of alanine aminotransferase(ALT) and aspartate aminotransferase(AST) were determined to confirm the hepatotoxicity of RMF. Real-time quantitative polymerase chain reaction(real-time PCR) and Western blot were used to determine the expressions of genes and proteins in zebrafish larvae. Gas chromatography time-of-flight mass spectrometry(GC-TOF-MS) was used to conduct untargeted metabolomics testing to explore the mechanism. The results showed that the toxicity of RMF to zebrafish larvae was dose-dependent, with 1 100 µg·mL~(-1) of the absolute lethal concentration and 448 µg·mL~(-1) of sublethal concentration. The hepatocyte apoptosis and degeneration appeared in the zebrafish larvae under the sublethal concentration of RMF. The content of ALT and AST in zebrafish larvae at the end of the experiment was significantly increased in a dose-dependent manner. Under the sublethal concentration, the expressions of genes and proteins related to apoptosis in zebrafish larvae were significantly increased as compared with the blank control group. The results of untargeted metabolomics showed that the important metabolites related to the he-patotoxicity of RMF were mainly enriched in alanine, aspartic acid, glutamic acid, and other pathways. In conclusion, it is inferred that RMF has certain hepatotoxicity to zebrafish larvae, and its mechanism may be related to apoptosis.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Zebrafish/genetics , Apoptosis , Larva
7.
Bone Joint Res ; 12(2): 91-102, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36718649

ABSTRACT

AIMS: Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. METHODS: Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology. RESULTS: Berberine inhibited proliferation and adhesion of RA-FLS cells, and significantly reduced the expression of MMP-1, MMP-3, RANKL, and TNF-α. Transcriptional results suggested that berberine intervention mainly regulated forkhead box O (FOXO) signal pathway, prolactin signal pathway, neurotrophic factor signal pathway, and hypoxia-inducible factor 1 (HIF-1) signal pathway. CONCLUSION: The effect of berberine on RA was related to the regulation of RAS/mitogen-activated protein kinase/FOXO/HIF-1 signal pathway in RA-FLS cells.Cite this article: Bone Joint Res 2023;12(2):91-102.

8.
Front Pharmacol ; 13: 1027687, 2022.
Article in English | MEDLINE | ID: mdl-36561345

ABSTRACT

Objective: Curcumae Rhizoma-Sparganii Rhizoma (CR-SR) is a traditional botanical drug pair that can promote blood circulation, remove blood stasis, and treat tumors in clinics. The aim of the present study was to investigate the therapeutic material basis and potential mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Method: The chemical profile analyses of CR-SR, CR, and SR were performed by molecular networking and UPLC-LTQ-Orbitrap MSn. The anti-liver cancer activities of CR-SR, CR, and SR were assessed by using a zebrafish xenograft model in vivo for the first time and detected by the HepG2 cell model in vitro. Combining the network analysis and molecular docking, real-time quantitative polymerase chain reaction (RT-qPCR) experiments were undertaken to further explore the mechanisms of CR-SR, CR, and SR for the treatment of liver cancer. Results: In total, 65 components were identified in CR-SR, CR, and SR. Based on the clusters of molecular networking, a total of 12 novel diarylheptanoids were identified from CR-SR and CR. By combining our results with information from the literature, 32 sesquiterpenoids and 21 cyclic dipeptides were identified from CR-SR, CR, and SR. The anti-liver cancer activities were observed in both the drug pair and the single botanical drugs in vitro and in vivo, and the order of activity was CR-SR > CR > SR. They could downregulate the expression of proto-oncogene tyrosine-protein kinase Src (SRC), epidermal growth factor receptor (EGFR), estrogen receptor-α (ESR1), prostaglandin endoperoxide synthase 2 (PTGS2), and amyloid precursor protein (APP). Conclusion: Taken together, the present study provided an experimental basis for the therapeutic material basis and potential molecular mechanisms of CR-SR, CR, and SR. This study provided a novel insight for objective clinical treatment of liver cancer.

9.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2712-2720, 2022 May.
Article in Chinese | MEDLINE | ID: mdl-35718491

ABSTRACT

This study aims to evaluate the anti-tumor and analgesic activities of Compound Kushen Injection(CKI) based on zebrafish model in vivo and investigate the anti-tumor mechanism. To be specific, zebrafish tumor xenotransplantation model was established by microinjection of murine LPC H12 cells into yolk sac. Then the high-dose CKI(H-CKI), medium-dose CKI(M-CKI), low-dose CKI(L-CKI) groups, and the model group were set. The anti-tumor activity of CKI was evaluated with the tumor area growth fold and integral absorbance(IA) growth fold 72 h after administration. The peripheral pain and central pain in zebrafish were respectively induced with acetic acid(AA) and phorbol myristate acetate(PMA). Zebralab ViewPoint system was employed to monitor behavioral trajectory of zebrafish, and movement times, movement time, movement distance, and movement velocity were used to evaluate the analgesic activity of CKI. Finally, real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) was performed to detect the expression levels of apoptosis-related B lymphocyte tumor-2(Bcl-2) and phosphatidylinositol-3-kinase(PI3 K)/protein kinase B(Akt or PKB) pathway-related genes, for the verification of the anti-tumor mechanism. Compared with the model group, M-CKI and H-CKI significantly reduced the growth folds of tumor area and IA, relief the peripheral pain and central pain. The mechanism was that CKI can up-regulate the expression of cysteine aspartic acid specific protease-3(caspase-3, Casp3) and caspase-9(Casp9), down-regulate the expression of phosphoinositide 3-kinase(PI3 K) and Akt, and significantly reduce the expression of Bcl-2, hypoxia-inducible factor-1α(HIF-1α), and vascular endothelial growth factor(VEGF). In conclusion, CKI has significant inhibitory effect on tumor growth and pain, which is related to the PI3 K/Akt signaling pathway. The pathway mediates cell apoptosis, suppresses tumor growth, and alleviates tumor pain.


Subject(s)
Antineoplastic Agents , Neoplasms , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Drugs, Chinese Herbal , Hypoxia-Inducible Factor 1, alpha Subunit , Mice , Neoplasms/drug therapy , Pain/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-bcl-2 , Vascular Endothelial Growth Factor A , Zebrafish
10.
Phytomedicine ; 102: 154201, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35660352

ABSTRACT

BACKGROUND: Activated fibroblast-like synoviocyte (FLS) played a significant role in the pathogenesis and progression of rheumatoid arthritis (RA). Apigenin-4'-O-α-L-rhamnoside showed remarkable effects against RA, however, no relevant studies on pharmacology of apigenin-4'-O-α-L-rhamnoside yet, the effects and underlying molecular mechanism of apigenin-4'-O-α-L-rhamnoside on RA are still unclear. PURPOSE: This study aimed to investigate the therapeutic effects and mechanisms of apigenin-4'-O-α-L-rhamnoside on RA-FLS cells by transcriptomic analysis. METHODS: In vitro, RA-FLS cell viability and migration were measured by CCK-8 and scratch assays, respectively. The effects of apigenin-4'-O-α-L-rhamnoside on inflammatory levels of MMP-1, MMP-3, RANKL and TNF-α in RA-FLS cells were detected using ELISA kits. High-throughput transcriptome analysis was performed to screen the key genes and related pathways of apigenin-4'-O-α-L-rhamnoside inhibit RA-FLSs, and the result of which were validated by RT-qPCR and western blot. Furthermore, in vivo, we also evaluated the effects of apigenin-4'-O-α-L-rhamnoside in rat with CIA. RESULTS: Apigenin-4'-O-α-L-rhamnoside significantly suppressed RA-FLS migration, exerted remarkable inhibiting effects on the expression levels on MMP-1, MMP3, RANKL and TNF-α in RA-FLS cells. It seemed that MAPK signaling pathway might be closely related to the pathogenesis of RA by down-regulated relevant core targets (MAPK1, HRAS, ATF-2, p38 and JNK). Moreover, apigenin-4'-O-α-L-rhamnoside attenuated the severity of arthritis in CIA rat. CONCLUSION: Apigenin-4'-O-α-L-rhamnoside inhibited pro-inflammatory cytokine, chemokine and MMPs factors production of RA-FLS by targeting the MAPK signaling pathway, which provided a scientific basis for potential application in the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Animals , Apigenin/pharmacology , Arthritis, Rheumatoid/metabolism , Cells, Cultured , Fibroblasts , Gene Expression Profiling , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/pharmacology , Rats , Signal Transduction , Synovial Membrane/pathology , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
11.
Front Pharmacol ; 13: 799512, 2022.
Article in English | MEDLINE | ID: mdl-35211012

ABSTRACT

Rhizoma Paridis is a traditional Chinese medicine commonly used in the clinical treatment of gynecological diseases. Previous studies have shown that aqueous extracts of Rhizoma Paridis exhibit some hepatotoxicity to hepatocytes. Here, using lipidomics analysis, we investigated the potential hepatotoxicity of Rhizoma Paridis and its possible mechanism. The hepatic damaging of different solvent extracts of Rhizoma Paridis on zebrafish larvae were determined by a combination of mortality dose, biochemical, morphological, and functional tests. We found that ethyl acetate extracts (AcOEtE) were the most toxic fraction. Notably, lipidomic responsible for the pharmacological effects of AcOEtE were investigated by Q-Exactive HF-X mass spectrometer (Thermo Scientific high-resolution) coupled in tandem with a UHPLC system. Approximately 1958 unique spectral features were detected, of which 325 were identified as unique lipid species. Among these lipid species, phosphatidylethanolamine cardiolipin Ceramide (Cer), lysophosphatidylinositol sphingosine (Sph), etc., were significantly upregulated in the treated group. Pathway analysis indicates that Rhizoma Paridis may cause liver damage via interfering with the glycerophospholipid metabolism. Collectively, this study has revealed previously uncharacterized lipid metabolic disorder involving lipid synthesis, metabolism, and transport that functionally determines hepatic fibrosis procession.

12.
Phytomedicine ; 95: 153787, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34782205

ABSTRACT

BACKGROUND: PPⅥ2 and PPⅦ3 were a group of Pennogenin compounds extracted from the Paris polyphylla and caused hepatotoxicity in human, while the potential underlying mechanism was unclear. PURPOSE: To evaluated the adverse effects of PPⅥ and PPⅦ on the liver in the zebrafish. METHOD: In this study, 4dpf zebrafish were used for acute toxicity test, LC0 was calculated, and 1/2LC0 and 3/5LC0 were selected for pathological section and liver area measurement to verify the hepatotoxicity of PPⅥ and PPⅦ. Etabonomics study was then conducted to further explore the mechanism of hepatotoxicity of PPⅥ and PPⅦ. Lovastatin was used as an inhibitor, and PCR was used to verify the results. RESULT: The result showed that under the condition of sub-lethal concentration exposure, hepatotoxicity-included changes in liver phenotype (liver area), hepatocyte swelling and degeneration, liver cell apoptosis and disturbed biochemical index were observed in zebrafish treated with PPⅥ and PPⅦ. Furthermore, the transcriptome was conducted to confirm the toxicity mechanism shared with PPⅥ and PPⅦ, and we found that steroid biosynthesis process and the related target genes were mainly affected. While, lovastatin treatment effectively ameliorated PPⅦ-induced zebrafish liver injury by improving the liver tissue structure and regulate the expression of associated genes including HMGCRA, SREBP, LSS, CYP2R1, PIK3R3A, GDPD1 and PFKFB-2. CONCLUSION: This study was the first investigation to provide the direct evidence of hepatotoxicity of PPⅥ and PPⅦ in vivo zebrafish model, which were related to the steroid biosynthesis. furthermore, in lovastatin played an important role in protection against hepatotoxicity induced by PPVI and PPⅦ by regulating the cholesterol metabolism.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Chemical and Drug Induced Liver Injury/drug therapy , Cholesterol , Hepatocytes , Humans , Liver
13.
Article in English | MEDLINE | ID: mdl-34950217

ABSTRACT

BACKGROUND: Realgar was usually selected as a substitute for arsenic trioxide to treat acute promyelocytic leukemia due to its higher effect without high cardiotoxicity. In traditional Chinese medicine (TCM), realgar is usually processed by the water-grinding method clinically, but the mechanism of realgar processing detoxification is still unclear. However, it is necessary to take safety and efficacy into account while evaluating a drug. METHODS: Sixty male Wistar rats were divided into control group, realgar products-treated groups, and corresponding subgroups. Biochemistry analysis and histopathological examination were performed in the study, and plasma samples were collected from all the rats for metabolomics analysis. RESULTS: No significant toxicity was observed in rats treated with 0.64 g/kg/day grinding realgar (G-r) and water-grinding realgar (WG-r). When the dose increased to 1.92 g/kg/day, the liver weight coefficients of the rats treated with G-r (HG-r: 3.65 ± 0.26%) and WG-r (HWG-r: 3.67 ± 0.14%) increased significantly and severe hepatic injury occurred in comparison to the control group (Group C: 3.00 ± 0.21%). After one week's withdrawal, the liver injury caused by the high dose of WG-r significantly recovered, while the liver damage caused by G-r was more difficult to recover. In metabolomics analysis, 14 metabolites were identified as the potential biomarkers in realgar-treated rats. These metabolites indicated that there were perturbations of the primary bile acid biosynthesis, arachidonic acid metabolism, linoleic acid metabolism, and glycerophospholipid metabolism in the realgar-treated groups. CONCLUSIONS: These results illustrate that, as a TCM processing method, water grinding had the effect of reducing toxicity, and the metabolomics method may be a valuable tool for studying the toxicity induced by TCM and the mechanism of TCM processing.

14.
Article in English | MEDLINE | ID: mdl-34876912

ABSTRACT

Phytolacca acinosa Roxb (PAR), a traditional Chinese medicine, has been widely used as a diuretic drug for a long period of time for the treatment edema, swelling, and sores. However, it has been reported that PAR might induce hepatotoxicity, while the mechanisms of its toxic effect are still unclear. In this study, network toxicology and metabolomic technique were applied to explore PAR-induced hepatotoxicity on zebrafish larvae. We evaluated the effect of PAR on the ultrastructure and the function of the liver, predictive targets, and pathways in network toxicology, apoptosis of liver cells by PCR and western blot, and metabolic profile by GC-MS. PAR causes liver injury, abnormal liver function, and apoptosis in zebrafish. The level of arachidonic acid in endogenous metabolites treated with PAR was significantly increased, leading to oxidative stress in vivo. Excessive ROS further activated the p53 signal pathway and caspase family, which were obtained from KEGG enrichment analysis of network toxicology. The gene levels of caspase-3, caspase-8, and caspase-9 were significantly increased by RT-PCR, and the level of Caps3 protein was also significantly up-regulated through western blot. PAR exposure results in the liver function abnormal amino acid metabolism disturbance and motivates hepatocyte apoptosis, furthermore leading to liver injury.

15.
Front Cell Dev Biol ; 9: 742421, 2021.
Article in English | MEDLINE | ID: mdl-34646828

ABSTRACT

Gastric carcinoma (GC) is a severe tumor of the digestive tract with high morbidity and mortality and poor prognosis, for which novel treatment options are urgently needed. Compound Kushen injection (CKI), a classical injection of Chinese medicine, has been widely used to treat various tumors in clinical practice for decades. In recent years, a growing number of studies have confirmed that CKI has a beneficial therapeutic effect on GC, However, there are few reports on the potential molecular mechanism of action. Here, using systems pharmacology combined with proteomics analysis as a core concept, we identified the ceRNA network, key targets and signaling pathways regulated by CKI in the treatment of GC. To further explore the role of these key targets in the development of GC, we performed a meta-analysis to compare the expression differences between GC and normal gastric mucosa tissues. Functional enrichment analysis was further used to understand the biological pathways significantly regulated by the key genes. In addition, we determined the significance of the key genes in the prognosis of GC by survival analysis and immune infiltration analysis. Finally, molecular docking simulation was performed to verify the combination of CKI components and key targets. The anti-gastric cancer effect of CKI and its key targets was verified by in vivo and in vitro experiments. The analysis of ceRNA network of CKI on GC revealed that the potential molecular mechanism of CKI can regulate PI3K/AKT and Toll-like receptor signaling pathways by interfering with hub genes such as AKR1B1, MMP2 and PTGERR3. In conclusion, this study not only partially highlighted the molecular mechanism of CKI in GC therapy but also provided a novel and advanced systems pharmacology strategy to explore the mechanisms of traditional Chinese medicine formulations.

16.
Chemphyschem ; 22(23): 2392-2400, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34472174

ABSTRACT

Designing high-performance materials for CO2 capture and conversion is of great significance to reduce the greenhouse effect and alleviate the energy crisis. The strategy of doping is widely used to improve activity and selectivity of the materials. However, it is unclear how the doping densities influence the materials' properties. Herein, we investigated the mechanism of CO2 capture, separation and conversion on MoS2 , MoSe2 and Janus MoSSe monolayers with different boron doping levels using density functional theory (DFT) simulations. The results indicate that CO2 , H2 and CH4 bind weakly to the monolayers without and with single-atom boron doping, rendering these materials unsuitable for CO2 capture from gas mixtures. In contrast, CO2 binds strongly to monolayers doped with diatomic boron, whereas H2 and CH4 can only form weak interactions with these surfaces. Thus, the monolayers doped with diatomic boron can efficiently capture and separate CO2 from such gas mixtures. The electronic structure analysis demonstrates that monolayers doped with diatomic doped are more prone to donating electrons to CO2 than those with single-atom boron doped, leading to activation of CO2 . The results further indicate that CO2 can be converted to CH4 on diatomic boron doped catalysts, and MoSSe is the most efficient of the surfaces studied for CO2 capture, separation and conversion. In summary, the study provides evidence for the doping density is vital to design materials with particular functions.

17.
Nanotechnology ; 32(39)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34153959

ABSTRACT

Highly oriented Co-MOF nanoneedle arrays arein situconstructed on Co foam (Co-MOF@Co) by using a one-pot solvothermal strategy. As-prepared Co-MOF@Co can be directly served as a binder-free electrode for supercapacitor, which exhibits wonderful electrochemical performances, i.e. high specific capacitance (12783.0 mF cm-2or 1164.2 F g-1), exceptional cycling stability (90.5% retention over 10 000 cycles at 250 mA cm-2) with a loading of 10.98 mg cm-2. Meanwhile, an asymmetric supercapacitor of AC//Co-MOF@Co delivers a high ratability (87% retention upon ten-fold current density) and high energy density of 43.4 W h kg-1at the power density of 145.1 W kg-1.

18.
Zhongguo Zhong Yao Za Zhi ; 46(2): 320-332, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33645118

ABSTRACT

With the increasing incidence of hepatobiliary diseases, it is particularly important to understand the role of molecular, cellular and physiological factors in the clinical diagnosis and treatment with traditional Chinese medicine(TCM) in the development of liver disease. Appropriate animal models can help us identify the possible mechanisms of relevant diseases. Danio rerio(zebrafish) model was traditionally used to study embryonic development, and has been gradually used in screening and evaluation of liver diseases and relevant drug in recent years. Zebrafish embryos develop rapidly and the digestive organs of 5-day-old juvenile fish are all mature. At this stage, they may develop hepatobiliary diseases induced by developmental defects or compounds. Zebrafish liver is similar to human liver in cell composition, function, signal transduction, response to injury and cell process mediating liver disease. Furthermore, due to the high conservation of genes and proteins between humans and zebrafish, zebrafish becomes an alternative system for studying basic mechanisms of liver disease. Therefore, genetic screening could be performed to identify new genes involving specific disease processes, and chemical screening could be made for drugs in specific processes. This paper briefly introduced the experimental properties of zebrafish as model system, emphasized the study progress of zebrafish models for pathological mechanism of liver diseases, especially fatty liver, and drug screening and evaluation, so as to provide ideas and techniques for the future liver toxicity assessment of TCM.


Subject(s)
Liver Diseases , Zebrafish , Animals , Drug Evaluation, Preclinical , Humans , Liver , Liver Diseases/genetics , Medicine, Chinese Traditional , Zebrafish/genetics
20.
J Ethnopharmacol ; 271: 113818, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33465444

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ranunculus japonicus Thunb. (short for R. japonicus) is a topically applied herb with the activities of removing jaundice, nebula and edema, preventing malaria, stopping asthma, promoting diuresis and relieving pain. It was firstly recorded in Zhouhou Beiji Fang and has been used for the treatment of malaria, ulcers, carbuncle, jaundice, migraine, stomachache, toothache and arthritis for over 1800 years. AIM OF THE STUDY: This study aimed to uncover the potentially effective components of R. japonicus and the pharmacological mechanisms against rheumatoid arthritis (RA) by combing LC-MS and network pharmacology. MATERIALS AND METHODS: Firstly, the chemical constituents of R. japonicus were qualitatively identified by UPLC-ESI-LTQ-Orbitrap MS. Then we performed target prediction by PharmMapper, protein-protein interaction (PPI) analysis via String, GO and KEGG pathway enrichment analysis by DAVID and constructed the compound-target-pathway network using Cytoscape. Thirdly, crucial compounds in the network were quantitatively analyzed to achieve quality control of R. japonicus. Finally, the pharmacological activities of R. japonicus and two potentially bioactive ingredients were validated in RA-FLSs (Rheumatoid Arthritis Fibroblast-like Synoviocytes) in vitro. RESULTS: Overall fifty-four ingredients of R. japonicus were identified and forty-five components were firstly discovered in R. japonicus. Among them, twenty-seven validated compounds were predicted to act on twenty-five RA-related targets and they might exhibit therapeutic effects against RA via positive regulation of cell migration, etc. Nine potentially bioactive components of R. japonicus which played important roles in the compound-target-pathway network were simultaneously quantified by an optimized UPLC-ESI-Triple Quad method. In vitro, compared to control group, R. japonicus extract, berberine and yangonin significantly inhibited the migration capacity of RA-FLSs after 24 h treatment. CONCLUSION: This study clarified that R. japonicus and the bioactive ingredients berberine and yangonin might exert therapeutic actions for RA via suppressing the aggressive phenotypes of RA-FLSs through combined LC-MS technology and network pharmacology tools for the first time. The present research provided deeper understanding into the chemical profiling, pharmacological activities and quality control of R. japonicus and offered reference for further scientific research and clinical use of R. japonicus in treating RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Pharmacology/methods , Ranunculus/chemistry , Cell Movement/drug effects , Cells, Cultured , Chromatography, Liquid , Fibroblasts/drug effects , Humans , Phytochemicals/chemistry , Phytochemicals/pharmacology , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Synoviocytes/drug effects , Tandem Mass Spectrometry , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...